
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 382

Test Compaction of Logic Blocks by using Fault

Identification Method

R.Vishnu Vardhan
1
, M.Sathiskumar

 2

PG Scholar, VLSI Design, P.A. College of Engineering and Technology, Coimbatore, India 1

Head of the Department, PG-ES, P.A. College of Engineering and Technology, Coimbatore, India 2

Abstract: An arbitrary design implemented into a field-programmable gate array (FPGA). FPGA contains many logical

blocks. Fault equivalence and fault dominance method are used to detect the fault with minimum time period. An

approach provides transparent scan to share tests among different logic blocks whose primary inputs and outputs are

included in scan chains even if the blocks have different numbers of state variables. The transparent-scan sequences
based on tests for one logic block could detect faults in other logic blocks, with different numbers of state variable. It

uses n number of test configuration instead of 2n number of test configuration by test code algorithm. Transparent scan

enhances the ability to produce a compact test set for a group of logic blocks. The procedure obtains a set of

transparent-scan sequences for a group of logic blocks from compacted test sets for the logic blocks in the group. From

this set, it chooses a subset that finds all the target faults, which are propagated by the complete set by using Modelsim

and area is obtained by using the XILINX ISE 8.1 software.

Keywords: Full-scan circuits, test compaction, test generation, transparent scan, Field-programmable gate array

(FPGA) testing.

I. INTRODUCTION

An approach to test application called transparent scan, the

scan-select and scan-chain inputs of a scan circuit are

considered as inputs of the sequential circuit in the same

way as the primary inputs, and the scan-chain outputs are

considered as outputs in the same way as the primary

outputs. A test sequence under transparent scan specifies

the values for all the inputs without distinguishing
between them based on the types. The corresponding

output sequence specifies values for all the outputs, again,

without distinguishing between them based on their types.

Faults are allowed to be detected during all the clock

cycles of a transparent-scan sequence. In general, fault

coverage is computed by sequential fault simulation of the

transparent-scan sequence. This view of the test

application process does not require any modifications to

the scan design or the design of the circuit.. test data

compression that consists of test vector compression on

the input side and response compaction on the output

side[3]-[4]. Test vector compression has been an active
area of research. testing system-on-chips by applying huge

amounts of test data, which is stored in the test memory

and then transferred to the chip under test during test

application[12]. Therefore, practical techniques, such as

test compaction and compression, are used to reduce the

amount of test data. The problem of compacting a set of

test sequences for sequential circuits was modeled with the

help of a covering matrix, where the test sequences can be

modeled as columns with variable cost to reflect the cost

(number of vectors) of covering selected subsets of circuit

faults [6]. D-algorithm that is shown to be ineffective for
the class of combinational logic circuits that is used to

implement error correction and translation (ECAT)

functions [11]. PODEM algorithm is a new test generation

algorithm for combinational logic circuits. More patterns

may be obtained than from standard ATPG programs [15].

However, fault coverage is much higher in all irredundant

multiple as well as single stuck faults are detected and

rectified. The test patterns are easily generated

algorithmically either by program or hardware and the

application of set covering models to the compaction of

test sets, which can be used with heuristic test set

compaction procedure[8]. For this purpose, recent and
highly effective set covering algorithms are used.

Compaction refers to a reduction in the test application

timing, while at-speed testing points to the application of

primary input sequences that contribute to the detection of

delay defects [1]. The proposed procedure generates an

initial test set that has a low test application time and

consists of long sequences of primary input vectors

applied consecutively, Experimental evidence suggests

that the size of computed test sets can often be reduced by

using set covering models and algorithms[14]. The test

compression method consumes large area and the fault

identification is a time consuming process is observed
from the previous techniques. All of the previous works

are mainly focused on test compression, to get the

minimum transition in the fault dictionary.

In this case, the scan-select and scan-chain input

sequences are such that the conventional test set is applied

to the circuit by applying the transparent scan sequence.

When a logic block is embedded in a designing, access to

its primary inputs and primary outputs, as well as the state

variables, for the purpose of test application may be

available only serially through scan chains. Fig. 1

illustrates such a logic block Bi with a single scan chain.
The scan chain is marked with dashed lines. The scan-

select input of Bi is denoted by SCSELi, its scan-chain

input by SCINPi, and its scan-chain output by SCOUTi.

Under the model of Fig. 1, a transparent-scan sequence for

Bi specifies values only for SCSELi and SCINPi. The

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 383

output sequence specifies only the corresponding values of

SCOUTi.

.
Fig. 1. Logic block of test compaction

II. PROPOSED METHOD

Transparent-scan sequences were allowed to assign
arbitrary values to the scan-select input. In this case, the

scan-select and scan-chain input sequences are such that

the conventional test set is applied to the circuit by

applying the transparent scan sequence. However, the

scan-select sequence of the final transparent-scan

sequence obtained is allowed to be different from the

initial sequence. The scan-chain input and primary input

sequences are also allowed to change relative to the initial

sequences. The goal is to achieve test compaction for a

single logic block using a single transparent scan

sequence, and changing the sequences of the various
inputs contributes to test compaction.

TABLE I

 TRANSPARENT SCAN SEQUENCES

u Ti,0 (u) Ti,1(u) Ti,2(u)

0 11 11 11

1 11 10 10

2 10 11 10

3 10 10 11

4 0x 0x 0x

5 1x 1x 1x

6 1x 1x 1x

7 1x 1x 1x

8 1x 1x 1x

The transparent-scan sequences shown in Table I apply

these tests to the circuit. Considering si, 0 = 0011, clock

cycles 0 to 3 of Ti, 0 are scan clock cycles, and they have

values Ti, 0(u, 0) = 1 for 0 ≤ u ≤ 3. These clock cycles are

used for loading the test 0011 into the scan chain. The

values of the scan-chain input, Ti, 0(u, 1) for 0 ≤ u ≤ 3,

correspond to this test assuming that scan chains are
shifted to the right. Clock cycle 4 is a functional clock

cycle with Ti, 0(4, 0) = 0. This clock cycle is used for

capturing the circuit response to 0011 in the scan chain.

The scan-chain input value Ti,0(u, 1) can be determined

arbitrarily, and it is marked with an “x” in Table I. Clock

cycles 5 to 8 are scan clock cycles with Ti,0(u, 0) = 1 for 5

≤ u ≤ 8. They allow the response of the circuit to 0011 to

be scanned out and observed. The values of the scan-chain

input Ti,0(u, 1), for 5 ≤ u ≤ 8, can be determined

arbitrarily. They can be used for overlapping the test with

the next test. For example, a two-pattern broadside test for

a logic block with ki state variables would have two

functional clock cycles between two scan subsequences of

length ki.

For the transparent-scan sequences considered in this

paper, it is also possible to use combinational fault

simulation instead of sequential fault simulation. This can

be achieved by applying the following process.

 1) The present state for the functional clock cycle can
be computed without logic or fault simulation based on the

values of the scan-chain input during the scan clock cycles

that define the scan-in operation at the beginning of the

test.

 2) Combinational fault simulation is required for the

functional clock cycle.

 3) Based on the fault effects that are propagated to the

flipflops during the functional clock cycle, and the number

of scan clock cycles for the scan-out operation at the end

of the test, it is possible to compute which fault effects

will reach an output.
The size of the test set impacts the test storage

requirements and time for test application, especially for

the circuits using scan design. The test application time is

directly proportional to the product of the number of test

patterns and the number of scan cells in the longest scan

chain. This necessitates generation of small test sets. The

complexity of the compaction process plays an important

role in test compaction. There are computation-intensive

procedures proposed in the literature that produce minimal

size test sets close to the lower bound. For instance, in

tests are generated repeatedly which can detect several

faults at the same time so as to replace previous tests
found.

A. Static Compaction

Static compaction is applied as a post processing step to

already generated test sets, to reduce the test set size

further and therefore is independent of the test generation

method. Static compaction is performed after all the
patterns are generated and this is independent of test

generation. The complexity of the compaction process

plays an important role in test compaction. There are

computation-intensive procedures proposed in the

literature that produce minimal size test sets close to the

lower bound. For instance, in tests are generated

repeatedly which can detect several faults at the

Same time so as to replace previous faults found. Though

these methods produce small test sets, they are not suitable

to large designs.

B. Dynamic Compaction

Dynamic compaction is interlinked within the test

generation process where a test cube is generated for a

fault and the generated test cube is added as constraints to

the next targeted fault. The advantage of dynamic

compaction and static compaction is that it reduces the

time required for post-processing step for compacting test
patterns. The dynamic compaction begins with a fault

which is on top of previously

Ordered fault list, called as primary fault. The primary

fault is targeted for test generation and if a test is

generated for the fault, another fault called secondary fault

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 384

is picked and a test generation for the fault is attempted

The test generation tries to generate a test for the

secondary fault with the primary input values and scan cell

values specified by previously generated test vector.

Test generation under the proposed approach, which

eliminates the distinction between scan operations and

application of primary input vectors, can be done as
follows. The circuit for which test generation is carried out

is Cscan. This circuit has two extra primary inputs

compared to the original circuit C: the scan-in input

scan_inp, and the scan-select input scan_sel. It also has an

extra primary output, the scan output scan_out. The

procedure will produce a test sequence where scan_sel and

scan_inp are used as conventional primary inputs, and

fault effects may be observed on scan_out. An example of

such a test sequence is shown in Table II.

TABLE II

 TEST SEQUENCE

Sequence a1 a2 a3 a4 Scan_sel Scan_inp

0 0 0 1 0 0 0

1 1 1 0 1 0 0

2 0 0 1 0 0 0

3 0 0 0 0 0 0

4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 0

7 0 0 0 0 1 0

8 0 0 0 1 0 0

9 1 0 0 0 0 0

10 0 0 0 1 0 0

11 0 0 0 0 0 1

12 0 0 0 1 0 0

13 0 0 0 0 1 0

14 0 0 0 0 1 1

15 0 0 0 1 0 0

16 1 0 0 0 1 0

17 0 0 0 1 0 0

18 0 0 0 0 1 1

19 0 0 0 0 1 0

20 0 0 0 0 0 0

21 0 1 0 0 0 0

22 0 0 1 0 0 0

23 1 0 0 1 0 0

24 0 0 0 0 0 0

This sequence was generated for s 27scan, which is the

scan version of ISCAS-89 benchmark circuit s 27. The

circuit has four primary inputs labeled a1,a2,a3,a4. It has

three state variables. It is interesting to note that scan is

applied for a single time unit at time unit 5, 7 and 16. In

addition, it is applied for two consecutive time units at

time units 13, 14 and 18, 19. Thus, all the scan operations
are limited scan operations with one and two shifts of the

scan chain, and there is never a complete scan operation

that takes three shifts of the scan chain.

C. Fault Identification Method

In order to detect all faults in the fault list, faults must be

sensitized using a set of single-term functions and test

vectors shown in Fig. 2. These single-term functions are

implemented in all LUTs used in the user design. The

single-term functions implemented in the user LUTs

correspond to a test configuration which detect the

interconnect faults sensitized in that test configuration.

The objective is to come up with a minimum number of

test configurations such that all faults in the fault list are

sensitized and, hence, detected in at least one test

configuration. Testing for bridging faults has always been

a challenging issue, particularly for ASICs. This is mainly
due to the fact that finding an appropriate fault list for

bridging faults is not as straightforward as that for stuck-at

faults. The number of all possible single stuck-at faults in

a circuit is linear with the size of the circuit whereas the

number of all pairwise bridging faults is quadratic with the

size of the circuit. Activating all possible faults (stuck-at,

open, and pairwise bridging faults) for M nets performed

using only[log2(M+2)] test vectors. These vectors are

columns of binary representations of numbers 1 to using

bits and called test codes.

Fig. 2. Logarithmic test set to activate all faults for six
wires

D. Controllability

Controllability refers to the ability to apply test patterns to

the inputs of a sub circuit via the primary inputs of the

circuit. To enhance the controllability of a circuit, the state

that cannot be controlled from its primary inputs has to be

reduced. These conditions are ensured by the enforcement

of certain design rules, particularly pertaining to the clocks

that evoke state changes in the network. Scan refers to the

ability to shift into or out of any state of the network.

E. Observability

Observability refers to the ability to observe the response

of a sub circuit via the primary outputs of the circuit or at

some other output points. To enhance the Observability,

output of the gate must be separately observed. Latches

are used in pairs; each has a normal input data, output data

and clock for system operation. For testing operation, the

two latches form a master/slave pair with one scan input

and scan output and non-overlapping scan clocks A and B
which are held low during system operation but cause the

scan data to be latched when high pulsed during scan. If

the trace is shorted to another signal or if the trace signal is

open, the correct signal value does not show up at the

destination pin, indicating a fault. The purpose of the

testing is to identify the presence of the defects in the

circuit. By understanding that, the circuit has defects if it

observes incorrect behavior. Fault simulation has to

determine the fault coverage for a specified set of test

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 385

vectors applied to a CUT, fault simulation is carried out.

For each fault expected in the CUT (excluding redundant

faults), the output produced when a test vector is applied

to a faulty circuit differs from the output produced in a

fault –free circuit. Thus, fault simulation that can be used

for this purpose, some commercial and others academic. It

then selects a subset of these sequences that is sufficient
for detecting all the target faults that are detected by S0,

S1,. . ., Sn-1. For 0 ≤ i < n and for 0 ≤ j < mi, the

procedure translates si, j into a transparent-scan sequence

Ti,j as described in the previous section. It then adds Ti,j to

T . It is possible to use a set covering procedure in order to

select a subset of T that detects all the faults in F.

However, a set covering procedure requires information

about all the sequences from T that detect every fault in F.

In the context of transparent scan, the two steps proceed as

follows.

Step 1 selects a subset Tsel1 ⊆ T by identifying faults from
F that are detected by unique sequences in T . If a fault f ∈

F has only one transparent-scan sequence Ti,j∈ T that

detects it, T i,j must be included in the selected subset

of transparent scan sequences. In this case, Ti,j is included

in Tsel1. Step 2 selects additional transparent-scan

sequences as necessary to produce a subset Tsel2 that

detects all the faults in F. The details of the two steps are

described next. Step 1 performs two-detection fault

simulation of the faults in F under the transparent-scan

sequences in T. The number of detections of a fault f ∈ F

is equal to the number of sequences from T that detect the

fault. The two-detection fault simulation procedure drops a
fault from further simulation after it finds two transparent-

scan sequences in T that detect the fault. It stores the

number of times a fault f ∈ F is detected during this

process in a variable denoted by ndet (f). It stores the

index of the first transparent-scan sequence that detects a

fault f ∈ F in a variable denoted by first (f). If, at the end

of this process, a fault f ∈ F has ndet (f) = 1, the sequence

with index first (f) must be selected. This sequence is

included in Tsel1.

The expectation is that the sequences in Tsel1 will detect

most of the faults in F. Tsel1 is guaranteed to detect a fault
f with ndet (f) = 1. For a fault f with ndet (f) = 2, there are

two or more options for transparent-scan sequences in T

that detect it. Such a fault is likely to be detected by Tsel1.

With a small number of faults that are not detected by

Tsel1, Step 2 uses fault simulation with fault dropping to

select additional sequences so as to detect all the faults in

F

Step 2 starts by assigning Tsel2 = Tsel1. It performs fault

simulation with fault dropping of F under the transparent-

scan sequences in Tsel2 in order to remove from

consideration faults that are already detected. It then

performs fault simulation with fault dropping of F under
T−Tsel2. A fault f ∈ F is detected by a transparent-scan

sequence vectors as a logic module.

F. Fault Equivalence Method

It is possible that two or more faults produce same faulty

behavior for all input patterns are called equivalent faults.
Any single fault from the set of equivalent fault set can

represent the whole set. In this case, much less than k×n

fault tests are required for a circuit with n signal line

removing equivalent faults from entire set of faults is

called fault collapsing that significantly decreases the

number of faults to check.

G. Fault Dominance Method

Fault F is called dominant to F' if all tests of F' detects F.

In this case, F can be removed from the fault list. If F

dominates F' and F' dominates F, then these two faults are

equivalent. Two faults are functionally equivalent if they

produce identical faulty functions or two faults are

functionally equivalent if those cannot distinguish them at

primary outputs (PO) with any input test vector. For
instance, tests are generated repeatedly which can detect

several faults at the same time so as to replace previous

faults found.

III. SIMULATION RESULTS

A. Fault Equivalence Output for Test Compaction

Fig. 3. Fault Equivalence Output for Test Compaction

Figure 3 finds the total numbers of faults that are present

in the circuit. This method increases the fault identification

and the total number of faults can be identified. This test

compaction also comprises of two set of fault coverage.

Here , both the fault coverage identifies the equal number

of faults present in the circuit.

B. Fault Dominance Output for Test Compaction

Fig. 4. Fault Dominance Output for Test Compaction

Figure 4 shows the faults that are dominated by another set

of fault in the test compaction. There are two set of fault

coverage in the test compaction. One set of fault coverage

is for the logic block used and another set of fault

coverage is for the dominance circuit. Second set of

fault coverage identifies the total number of fault within

minimum time period.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 386

C. Fault identification in s27 benchmark circuit

Fig. 5. Fault Identification Output in s27 Benchmark Circuit

Figure 5 shows the result of the fault identification of s27

benchmark circuit. Stuck –at fault in the circuit can be

identified by the values stored in the latch. Both the Stuck

–at 1 and Stuck – at 0 can be identified. Stuck –at 1 is

obtained for the values of latch as 1 and Stuck –at 0 is

obtained for the values of latch as 0

D. Fault identification in s208 benchmark circuit

Fig. 6. Fault Identification Output in s208 Benchmark Circuit

Figure 6 shows the result of s208 benchmark circuit from

which the fault coverage is obtained. Comparing to the

previous techniques fault coverage of 61 is obtained in this

benchmark circuit with minimum number of test vectors is
obtained. The fault coverage value is obtained during the

transition in the LFSR values. During the linear

propagation of the shift register, fault coverage is

identified.

E. Comparison of Fault Coverage and Test Vectors for

Different Methods:

Table III shows comparison of test vector and fault

coverage using test code algorithm. The proposed

technique uses test code algorithm method with reduced

number of test vectors and also it provide high fault

coverage compare to the existing method.

Fault Equivalence and Dominance method is 20% more

efficient than PODEM and Boolean Difference method.

For the proposed method, by using the fault equivalence

and fault dominance method the number of test vectors

used is minimum and the fault coverage is high. From the
comparison, Boolean Difference method is 12% efficient

than PODEM algorithm, Fault Equivalence and

Dominance method is 20% more efficient than PODEM

and Boolean Difference method.

TABLE III

 COMPARISON OF FAULT COVERAGE AND TEST VECTORS FOR DIFFERENT

METHODS

Benchmark

circuits

Boolean

Difference

Method [El-

Maleh

A. and Osais

(2004)]

Fault

Equivalence and

Dominance

Method[PHASE

–I WORK]

Fault

Identification

Method

[PHASE –II

WORK]

Test

Vector

FC Test

Vector

FC Test

Vector

FC

s1428 100 50 120 52 120 64

s298 160 61 160 63 150 70

s27 120 50 100 50 100 67

s208 100 52 100 61 90 72

s27-s208 110 60 80 69 80 81

IV. CONCLUSION

Fault identification method used in the test compaction, it

minimizes the total number of test vectors used in the

circuit. This project describes a test compaction procedure

under transparent scan for groups of logic blocks whose
primary inputs and outputs are scanned. Using test code

algorithm it reduces 2n number of test vector sequence to n

number of test vector. Experimental results showed that

transparent-scan sequences based on tests for one logic

block could detect faults in other logic blocks, with

different number of state variables. This allowed a reduced

number of transparent-scan sequences to be used for the

group. Transparent-scan sequences of logic blocks with

higher numbers of state variables typically detected faults

of logic block with smaller numbers of state variables.

This was the main contributor to the reduction in the

number of transparent scan sequences for the group using
test code algorithm.

REFERENCES

[1] Barnhart C. and Brunkhorst V. (2001), „OPMISR: The foundation for

compressed ATPG vectors,‟ in Proc. Int. Test Conf., pp. 748–757.

[2] Boateng K.O. and Nakata T.M. (2001), „A method of static

compaction of test stimuli,‟ in Proc. Asian Test Conf., pp. 137–142

[3] Chang J.S. and Lin C.S. (1992), „Test set compaction for

combinational circuits,‟ in Proc. Asian Test Conf., pp. 20–25.

[4] Dimopoulos M. and Linardis P. (2003), „Accelerating the

compaction of test sequences in sequential circuits through problem

size reduction,‟ IEEE Trans. On Comput. Aided Design, Vol. 22,

No. 10, pp. 1443–1449.

[5] Dimopoulos M. and Linardis P. (2004), „Efficient static compaction

of test sequence sets through the application of set covering

techniques,‟ in Proc. Design, Int. Test Conf., pp. 194–199.

[6] El-Maleh A.H. and Osais Y.E. (2003), „Test vector decomposition-

based static compaction algorithms for combinational circuits,‟

IEEE Trans. On Comput. Aided Design, Vol. 8, No. 4, pp. 430–459.

[7] Flores P.F. and Marques-Silva J.P. (2000), „On applying set

covering models to test set compaction,‟ IEEE Trans. on Comput.

Aided Design, Vol. 22, No. 10, pp. 1443–1449

[8] Hamzaoglu I. and Patel J.H. (1998), „Test set compaction algorithms for

combinational circuits,‟ in Proc. Int. Conf. Comput. Aided Design, pp. 283–289
[9] Hochbaum D.S. (1996), „An optimal test compression procedure for

combinational circuits,‟ IEEE Trans. on Comput. Aided Design,

Vol. 15, No. 10, pp. 1294–1299.

[10] Kajihara S. and Reddy S.M. (1995), „Cost-effective generation of
minimal test sets for stuck-at faults in combinational logic circuits,‟ IEEE

Trans. On Comput. Aided Design, Vol. 14, No. 12, pp. 1496–1504.

[11] Koenemann B. and Wheater D. (2001), „A Smart BIST variant

guaranteed encoding,‟ in Proc. Asian Test Conf., pp. 325–330.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4391 387

[12] Lee K. and Huang C. (1998), „Using a single input to support multiple scan

chains,‟ in Proc. Int. Conf. Comput. Aided Design, pp. 74–78.

[13] Pomeranz I. and Reddy S.M. (1998), „A new approach to test

generation and test compaction for scan circuits,‟ in Proc. Int. Conf.

Compt. Aided Design, pp. 283–289

[14] Pomeranz I. and Reddy S.M. (1991), „COMPACTEST: A method

to generate compact test sets for combinational circuits,‟ in Proc.

Int. Test Conf., pp. 194–203

[15] Rajski J. and Tsai K.H. (2002), „Embedded deterministic test for

low cost manufacturing test,‟ in Proc. Int. Test Conf., pp. 301–310.

	E. Observability
	C. Fault identification in s27 benchmark circuit
	D. Fault identification in s208 benchmark circuit

